Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
1.
Medicina (Argentina) ; 83(Supplement 2):2-5, 2023.
Article in Spanish | EMBASE | ID: covidwho-2271094

ABSTRACT

The COVID-19 pandemic spread around the world due to the enormous transmission of the SARS-CoV-2 among humans. COVID-19 represents a threat to global public health. The entry of this virus into cells is greatly facilitated by the presence of angiotensin-converting enzyme 2 (ACE2) in the cell membrane. Today we do not have a precise understanding of how this receptor expresses in the brain during human development and, as a consequence, we do not know whether neural cells in the developing brain are susceptible to infection. We review the knowledge about ACE2 expression in the developing human brain, with special attention to the fetal stage. This stage corresponds to the period of the cerebral cortex formation. Therefore, SARS-CoV-2 infection during the fetal period may alter the normal development of the cerebral cortex. Although few cases have been published demonstrating vertical transmission of SARS-CoV-2 infection, the large number of infected young people may represent a problem which requires health surveillance, due to the possibility of cognitive alterations and abnormalities in the development of cortical circuits that may represent a predisposition to mental problems later in life.Copyright © 2023, Instituto de Investigaciones Medicas. All rights reserved.

2.
Front Immunol ; 12: 653786, 2021.
Article in English | MEDLINE | ID: covidwho-1226977

ABSTRACT

Introduction: Although acute transverse myelitis (ATM) is a rare neurological condition (1.34-4.6 cases per million/year) COVID-19-associated ATM cases have occurred during the pandemic. Case-finding methods: We report a patient from Panama with SARS-CoV-2 infection complicated by ATM and present a comprehensive clinical review of 43 patients with COVID-19-associated ATM from 21 countries published from March 2020 to January 2021. In addition, 3 cases of ATM were reported as serious adverse events during the clinical trials of the COVID-19 vaccine ChAdOx1 nCoV-19 (AZD1222). Results: All patients had typical features of ATM with acute onset of paralysis, sensory level and sphincter deficits due to spinal cord lesions demonstrated by imaging. There were 23 males (53%) and 20 females (47%) ranging from ages 21- to 73- years-old (mean age, 49 years), with two peaks at 29 and 58 years, excluding 3 pediatric cases. The main clinical manifestations were quadriplegia (58%) and paraplegia (42%). MRI reports were available in 40 patients; localized ATM lesions affected ≤3 cord segments (12 cases, 30%) at cervical (5 cases) and thoracic cord levels (7 cases); 28 cases (70%) had longitudinally-extensive ATM (LEATM) involving ≥4 spinal cord segments (cervicothoracic in 18 cases and thoracolumbar-sacral in 10 patients). Acute disseminated encephalomyelitis (ADEM) occurred in 8 patients, mainly women (67%) ranging from 27- to 64-years-old. Three ATM patients also had blindness from myeloneuritis optica (MNO) and two more also had acute motor axonal neuropathy (AMAN). Conclusions: We found ATM to be an unexpectedly frequent neurological complication of COVID-19. Most cases (68%) had a latency of 10 days to 6 weeks that may indicate post-infectious neurological complications mediated by the host's response to the virus. In 32% a brief latency (15 hours to 5 days) suggested a direct neurotropic effect of SARS-CoV-2. The occurrence of 3 reported ATM adverse effects among 11,636 participants in the AZD1222 vaccine trials is extremely high considering a worldwide incidence of 0.5/million COVID-19-associated ATM cases found in this report. The pathogenesis of ATM remains unknown, but it is conceivable that SARS-CoV-2 antigens -perhaps also present in the AZD1222 COVID-19 vaccine or its chimpanzee adenovirus adjuvant- may induce immune mechanisms leading to the myelitis.


Subject(s)
COVID-19 Vaccines/adverse effects , COVID-19/complications , Myelitis, Transverse/complications , SARS-CoV-2/pathogenicity , Adolescent , Adult , Aged , ChAdOx1 nCoV-19 , Child , Child, Preschool , Female , Humans , Male , Middle Aged , Myelitis, Transverse/diagnosis , Myelitis, Transverse/pathology , Myelitis, Transverse/physiopathology , Nervous System Diseases/complications , Nervous System Diseases/diagnosis , Nervous System Diseases/pathology , Nervous System Diseases/physiopathology , SARS-CoV-2/immunology , SARS-CoV-2/physiology , Spinal Cord/diagnostic imaging , Spinal Cord/pathology , Spinal Cord/physiopathology , Viral Tropism , Young Adult
3.
Aging Dis ; 12(2): 345-352, 2021 Apr.
Article in English | MEDLINE | ID: covidwho-1168240

ABSTRACT

The SARS-CoV-2 infection has spread to all continents, affecting particularly older people. The complexity of SARS-CoV2 infection is still under study. Despite respiratory involvement is the main clinical manifestation of COVID-19, neurological manifestations are common. Although it is obvious to give priority to infectious emergency and the infectious disease itself, at present, however, data on potential long-term damages generally and on long-term cognitive functions impairment of older COVID-19 survivors have yet to be investigated. Because the hypothesis on the involvement of SARS-CoV-2 on the long-term cognitive decline pathogenesis would seem difficult to prove, we wanted to explore the brain mechanisms of SARS-CoV-2, in order to provide more in-depth analysis and to draw attention to a topic relevant to basic scientific research and, more generally, to the elderly population.Looking forward, we argue that an early clinical and instrumental cognitive assessment can help prevent and slow down this possible complication or at least improve the quality of life for older people Covid-19 survivor.

4.
Cell Stem Cell ; 28(2): 331-342.e5, 2021 02 04.
Article in English | MEDLINE | ID: covidwho-1009887

ABSTRACT

ApoE4, a strong genetic risk factor for Alzheimer disease, has been associated with increased risk for severe COVID-19. However, it is unclear whether ApoE4 alters COVID-19 susceptibility or severity, and the role of direct viral infection in brain cells remains obscure. We tested the neurotropism of SARS-CoV2 in human-induced pluripotent stem cell (hiPSC) models and observed low-grade infection of neurons and astrocytes that is boosted in neuron-astrocyte co-cultures and organoids. We then generated isogenic ApoE3/3 and ApoE4/4 hiPSCs and found an increased rate of SARS-CoV-2 infection in ApoE4/4 neurons and astrocytes. ApoE4 astrocytes exhibited enlarged size and elevated nuclear fragmentation upon SARS-CoV-2 infection. Finally, we show that remdesivir treatment inhibits SARS-CoV2 infection of hiPSC neurons and astrocytes. These findings suggest that ApoE4 may play a causal role in COVID-19 severity. Understanding how risk factors impact COVID-19 susceptibility and severity will help us understand the potential long-term effects in different patient populations.


Subject(s)
Apolipoproteins E/metabolism , Brain/pathology , Brain/virology , COVID-19/virology , Induced Pluripotent Stem Cells/virology , SARS-CoV-2/physiology , Tropism/physiology , Adenosine Monophosphate/analogs & derivatives , Adenosine Monophosphate/pharmacology , Alanine/analogs & derivatives , Alanine/pharmacology , Animals , Antiviral Agents/pharmacology , Astrocytes/drug effects , Astrocytes/pathology , Astrocytes/virology , Cell Differentiation , Chlorocebus aethiops , Humans , Nerve Degeneration/pathology , Neurites/pathology , Neurons/drug effects , Neurons/pathology , Neurons/virology , Organoids/drug effects , Organoids/pathology , Organoids/virology , Protein Isoforms/metabolism , Synapses/pathology , Vero Cells
SELECTION OF CITATIONS
SEARCH DETAIL